\(5\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+2y^{n-1}\right)+4\left(-x^{n+1}+2y^{n-1}\right)\)
\(=15x^{n+1}-5y^{n-1}-3x^{n+1}-6y^{n-1}-4x^{n+1}+8y^{n-1}\)
\(=8x^{n+1}-3y^{n-1}\)
\(5\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+2y^{n-1}\right)+4\left(-x^{n+1}+2y^{n-1}\right)\)
\(=15x^{n+1}-5y^{n-1}-3x^{n+1}-6y^{n-1}-4x^{n+1}+8y^{n-1}\)
\(=8x^{n+1}-3y^{n-1}\)
3xn - 2 . (xn+2- yn+2) + yn+2 . (3xn - 2 - yn - 2)
Rút gọn biểu thức x n ( x n + 1 + y n ) - y n ( x n + y n - 1 ) được kết quả là?
A. x 2 n + 1 - y 2 n - 1
B. x 2 n - y 2 n
C. x 2 n - 1 - y 2 n + 1
D. x n + 1 - y n - 1
xn–1(x + y) – y(xn–1 + yn–1)
Rút gọn biểu thức: xn-1(x + y) – y(xn–1 + yn–1)
Đề bài: Rút gọn hai biểu thức sau:
a) x(x-y)+y(x-y):
b) xn-1(x+y)-y(xn-1+yn-1).
Rút gọn biểu thức:
a) x(x – y) + y(x – y)
b) xn-1(x + y) – y(xn–1 + yn–1)
chung minh rang neu x1+1/x2 = x2 +1/x3=...=xn+1/x1 thi ta co x1 = x2 =...=xn
tìm x
n, (x+1/x) ² - 3(x+1/x)+2=0
o, 9=(x-1)x(x+1)(x+2) - 24=0
p, x^4 - 4x ³ + 6x ² - 4x +1=0
Chứng minh rằng xm xn 1 chia hết cho x2 x 1 khi và chỉ khi mn−2chia hết cho 3.Áp dụng phân tích thành nhân tử x7 x2 1