tìm điều kiện bài toán:
a) \(y=\dfrac{1}{x}-\dfrac{\sqrt{2x-1}}{x^2-3x+2}\)
b) \(y=\dfrac{1}{x^2-1}-\sqrt{7-2x}\)
c) \(y=\dfrac{2}{x}+\dfrac{3}{4-2x+x^2}\)
d) \(y=\sqrt{25-x^2}-2\sqrt{x}+3\)
giải bất pt: \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}< 2x+\dfrac{1}{2x}-7\)
Tìm tập nghiệm của phương trình
a/ \(x-\sqrt{2x+3}=-2x\)
b/ \(\dfrac{1}{x}=1-\dfrac{1}{x+1}\)
c/ \(\dfrac{2}{\sqrt{x+3}}=\dfrac{1}{\sqrt{x^2-9}}\)
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
tìm TXĐ của hàm số:
a) y=\(\dfrac{\sqrt{x^2-x+1}}{x-3}\)
b)y=\(\dfrac{\sqrt{5-2x}}{\left(x-2\right)\sqrt{x-1}}\)
Giúp em giải các hệ phương trình này với
a)\(\begin{cases}x^4+2y^3-x=-\dfrac{1}{4}+3\sqrt{3}\\ y^4+2x^3-y=-\dfrac{1}{4}-3\sqrt{3}\end{cases}\)
b) \(\begin{cases} x+\dfrac{78y}{x^2+y^2}=20\\ y+\dfrac{78x}{x^2+y^2}=15\end{cases}\)
c) \(\begin{cases}\left(1-\dfrac{12}{y+3x}\right)\cdot \sqrt{x}=2\\ \left(1+\dfrac{12}{y+3x}\right)\cdot\sqrt{y}=6 \end{cases}\)
d) \(\begin{cases} \sqrt{x+1}+\sqrt[4]{x-1}-\sqrt{y^4+2}=y\\ x^2+2x(y-1)+y^2-6y+1=0\end{cases}\)
e) \(\begin{cases} \sqrt{4x^2+(4x-9)(x-y)}+\sqrt{xy}=3y\\ 4\sqrt{(x+2)(y+2x)}=3(x+3)\end{cases}\)
Giải các pt
a) \(\sqrt{2}\sin\left(2x+\dfrac{\pi}{4}\right)=3\sin x+\cos x+2\)
b) \(\dfrac{\left(2-\sqrt{3}\right)\cos x-2\sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2\cos x-1}=1\)
c) \(2\sqrt{2}\cos\left(\dfrac{5\pi}{12}-x\right)\sin x=1\)
Cho các số x, y, z thỏa mãn x+ y+ xyz= z. Giá trị lớn nhất của biểu thức P=\(\dfrac{2x}{\sqrt{\left(x^2+1\right)^3}}+\dfrac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Câu 35. Cho hàm số f(x) ={\(\left|\dfrac{-2\left(x-3\right)}{\sqrt{x^2}-1}\right|\) \(\dfrac{-1\le x< 1}{x\ge1}\) Gía trị của f(-1), f(1) lần lượt là.
Câu 36. Đồ thị hàm số y={\(\dfrac{2x+1}{x^2-3}\dfrac{khix\le2}{khix>2}\) đi qua điểm có tọa độ là.
Câu 37. Cho hàm số y={\(\dfrac{-2x+1khix\le-3}{\dfrac{x+7}{2}khix>-3}\) Biết f(x0) = 5 thì x0 là:
Câu 38. Hàm số y=\(\dfrac{x-2}{\left(x-2\right)\left(x-1\right)}điểm\) nào thuộc đồ thị.