\(\Leftrightarrow x^3+8-x^3-3x=14\)
=>-3x=6
hay x=-2
`(2+x)(x^2-2x+4)-(3+x^2)x=14`
`<=>x^3+8-3x-x^3=14`
`<=>-3x=6`
`<=>x=-2`
Vậy `S={-2}`
\(\left(2+x\right)\left(x^2-2x+4\right)-\left(3+x^2\right)\cdot x=14\\ \Leftrightarrow x^3+8-x^3-3x=14\\ \Leftrightarrow\left(x^3-x^3\right)-3x+8=14\\ \Leftrightarrow-3x+8=14\\ \Leftrightarrow-3x=6\\ \Leftrightarrow x=-2\)
(2+x)(x2−2x+4)−(3+x2)⋅x=14⇔x3+8−x3−3x=14⇔(x3−x3)−3x+8=14⇔−3x+8=14⇔−3x=6⇔x=−2