(2\(x+6\)).(4\(^x\) - 64) = 0
\(\left[{}\begin{matrix}2x+6=0\\4^x-64=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=6\\4^x=64\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{6}{3}\\4^x=4^3\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy \(x\in\) {2; 3}
\(\left(2x+6\right)\left(4^x-64\right)=0\)
\(2x+6=0\) hoặc \(4^x-64=0\)
*) \(2x+6=0\)
\(2x=0-6\)
\(2x=-6\)
\(x=-6:2\)
\(x=-3\)
*) \(4^x-64=0\)
\(4^x=0+64\)
\(4^x=64\)
\(4^x=4^3\)
\(x=3\)
Vậy \(x=-3;x=3\)