\(\left|2x+6\right|+\left|x+2\right|+\left|2x+2\right|=4\)
\(\Leftrightarrow2\left|x+3\right|+\left|x+2\right|+2\left|x+1\right|=4\) (1)
+, Với \(x< -3\) thì (1) trờ thành:
\(2(-x-3)+(-x-2)+2(-x-1)=4\)
\(\Rightarrow-2x-6-x-2-2x-2=4\)
\(\Rightarrow-5x-10=4\)
\(\Rightarrow-5x=14\)
\(\Rightarrow x=-\dfrac{14}{5}\left(ktm\right)\)
+, Với \(-3\le x< -2\), thì (1) trở thành:
\(2\left(x+3\right)+\left(-x-2\right)+2\left(-x-1\right)=4\)
\(\Rightarrow2x+6-x-2-2x-2=4\)
\(\Rightarrow-x+2=4\)
\(\Rightarrow x=-2\left(ktm\right)\)
+, Với \(-2\le x< -1\), thì (1) trở thành:
\(2\left(x+3\right)+\left(x+2\right)+2\left(-x-1\right)=4\)
\(\Rightarrow2x+6+x+2-2x-2=4\)
\(\Rightarrow x+6=4\)
\(\Rightarrow x=-2\left(tm\right)\)
+, Với \(x\ge-1\), thì (1) trở thành:
\(2\left(x+3\right)+\left(x+2\right)+2\left(x+1\right)=4\)
\(\Rightarrow2x+6+x+2+2x+2=4\)
\(\Rightarrow5x+10=4\)
\(\Rightarrow5x=-6\)
\(\Rightarrow x=-\dfrac{6}{5}\left(ktm\right)\)
Vậy \(x=-2\)
#Urushi☕
|2x+6|+ |x+2| + |2x+2| =4
=>2x+6+ x+2 + 2x+2 =4 hoặc 2x+6+ x+2 + 2x+2 =-4
=>2x+6+ x+2 + 2x+2 =4 2x+6+ x+2 + 2x+2 =-4
=>(2x+x+2x)+(6+2+2)=4 (2x+x+2x)+(6+2+2)=-4
=> 5x+10=4 5x+10=-4
=>5x=4-10 5x=(-4)-10
=>5x=-6 5x=-14
=>x=(-6):5 x= (-14):5
=>x=-6/5 x=-14/5
vậy x∈{-6,5;-14/5}