giải pt , sqrt{x^4+4x^2}+sqrt{x+x^2}sqrt{left(x^2+sqrt{x}right)^2+9x^2}.x0x^30x^32.0.sqrt{0}x^32xsqrt{x}x^32xsqrt{x} 4left(x^3-2xsqrt{x}right)^204left(x^6-4x^4sqrt{x}+4x^2xright)04x^6-16x^4sqrt{x}+16x^2x04x^6+16x^316x^4sqrt{x}16x^4+4x^5+4x^6+16x^316x^4+4x^5+16x^4sqrt{x}4x^3left(x+1right)left(x^2+4right)4left(4x^4+4x^4sqrt{x}+x^4.xright)4x^3left(x+1right)left(x^2+4right)4left(2x^2+x^2sqrt{x}right)^22sqrt{2x^3left(x+1right)left(x^2+4right)}2left(2x^2+x^2sqrt{x}right)x^4+x^2+4x^2+x+2sqrt{2x^3le...
Đọc tiếp
giải pt , \(\sqrt{x^4+4x^2}+\sqrt{x+x^2}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}.\)
\(x=0\)
\(x^3=0\)
\(x^3=2.0.\sqrt{0}\)
\(x^3=2x\sqrt{x}\)
\(x^3=2x\sqrt{x}\)
\(4\left(x^3-2x\sqrt{x}\right)^2=0\)
\(4\left(x^6-4x^4\sqrt{x}+4x^2x\right)=0\)
\(4x^6-16x^4\sqrt{x}+16x^2x=0\)
\(4x^6+16x^3=16x^4\sqrt{x}\)
\(16x^4+4x^5+4x^6+16x^3=16x^4+4x^5+16x^4\sqrt{x}\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(4x^4+4x^4\sqrt{x}+x^4.x\right)\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(2x^2+x^2\sqrt{x}\right)^2\)
\(2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)\)
\(x^4+x^2+4x^2+x+2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)+x^4+x^2+4x^2+x\)
\(\left(\sqrt{x^4+4x^2}+\sqrt{x^2+x}\right)^2=\left(x^4+2x^2\sqrt{x}+x\right)+9x^2\)
\(\sqrt{x^4+4x^2}+\sqrt{x^2+x}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}\)
vậy x=0 là nghiệm của pt =))