\(2\left(x-1\right)^5=-64\)
=> \(\left(x-1\right)^5=-64:2=-32\)
=> \(\left(x-1\right)^5=\left(-2\right)^5\)
=> x - 1 = -2
=> x = -1
\(2\left(x-1\right)^5=-64\)
=> \(\left(x-1\right)^5=-64:2=-32\)
=> \(\left(x-1\right)^5=\left(-2\right)^5\)
=> x - 1 = -2
=> x = -1
1) \(4^{x+1}=64^x\)
2) \(\dfrac{x}{2}-\dfrac{x}{5}=1+x\)
Tìm x:
a, (-3 / 4) ^ 3x-1 = -27 / 64
b, (4/5) ^ 2x+5 = 256 / 625
c, (x+3) ^5 / (x+2) ^2 = 64 / 27
d, x-1 / x+5 = 6/7
1) 53 + ( 124 - x ) = 87 2) 12.x - 64= 2^5
tính
( 1/3 - 1/7 - 1/13 ) / ( 2/3 - 2/7 - 2/13 ) x ( 3/4 - 3/16 - 3/64 - 3/256 ) / ( 1- 1/4 - 1/16 - 1/64 ) + 5/8
(x-1)x+2=(x-1)x+4
1/ 4 . 2/6 . 3/8 . 4/10 . 5/15 .... 30/62 . 31/64= 2x
Chứng minh rằng:
1) x - 5 > x - 10
2) x - 4 > x - 8
3) x + 2 > x - 6
4) x - 3 < x + 7
5) x + 5 < x + 8
6) x + 10 >x + 7
(x-5) mũ 2 = 16
(2x-1) mũ 3 = -64
2 mũ x + 2 mũ x+3 = 144
2 mũ x-1 + 5×2 mũ x-2= 224
tính (1/4) x (2/6) x (3/8) x (4/20) x (5/12) x...x (31/64) = 2x
Ta có: (1/4)*(2/6)*(3/8)*(4/10)*(5/12)*...*(30/62)*(31/64)=2^x. Tìm x