`(2x-1/3)^2=4`
\(< =>\left[{}\begin{matrix}2x-\dfrac{1}{3}=2\\2x-\dfrac{1}{3}=-2\end{matrix}\right.\\ < =>\left[{}\begin{matrix}2x=2+\dfrac{1}{3}\\2x=-2+\dfrac{1}{3}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}2x=\dfrac{7}{3}\\2x=-\dfrac{5}{3}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{7}{3}:2\\x=-\dfrac{5}{3}:2\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{7}{3}\cdot\dfrac{1}{2}\\x=-\dfrac{5}{3}\cdot\dfrac{1}{2}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=-\dfrac{5}{6}\end{matrix}\right.\)
\(\left(2x-\dfrac{1}{3}\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{1}{3}=2\\2x-\dfrac{1}{3}=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=2+\dfrac{1}{3}\\2x=-2+\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{7}{3}\\2x=-\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{4}\\x=-\dfrac{5}{4}\end{matrix}\right.\)