`2\sqrt{9}-\sqrt{16}=2\sqrt{3^2}-\sqrt{4^2}=2.3-4=6-4=2`
`\sqrt{25}-\sqrt{16}+\sqrt{81}=\sqrt{5^2}-\sqrt{4^2}+\sqrt{9^2}=5-4+9=10`
`2\sqrt{9}-\sqrt{16}=2\sqrt{3^2}-\sqrt{4^2}=2.3-4=6-4=2`
`\sqrt{25}-\sqrt{16}+\sqrt{81}=\sqrt{5^2}-\sqrt{4^2}+\sqrt{9^2}=5-4+9=10`
\(2.\sqrt{16-\sqrt{81}+}\sqrt{25}.\sqrt{49}\)
Tìm giá trị các biểu thức sau bằng cách biến đổi, rút gọn thích hợp:
a) \(\sqrt{\frac{25}{81}.\frac{16}{49}.\frac{196}{9}}\) b) \(\sqrt{3\frac{1}{16}.2\frac{14}{25}.2\frac{34}{81}}\)
c) \(\frac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}\) d) \(\sqrt{21,6}.\sqrt{810}.\sqrt{11^2-5^2}\)
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
tính
a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49}\)
b) 36 : \(\sqrt{2.3^2.18}-\sqrt{169}\)
c) \(\sqrt{\sqrt{81}}\)
d) \(\sqrt{3^2+4^2}\)
a) \(\dfrac{2}{5}\sqrt{25}\) -\(\dfrac{1}{2}\sqrt{4}\) b)0,5\(\sqrt{0,09}\) +5\(\sqrt{0,81}\) c)\(\dfrac{2}{5}\sqrt{\dfrac{25}{36}}\) -\(\dfrac{5}{2}\sqrt{\dfrac{4}{25}}\)
d)-2\(\sqrt{\dfrac{-36}{-16}}\) + 5\(\sqrt{\dfrac{-81}{-25}}\)
Tính
\(\dfrac{2}{3}\sqrt{27}-\dfrac{9}{2}\sqrt{\dfrac{16}{81}}+\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(\dfrac{2}{3}\sqrt{9u-9}-\dfrac{1}{4}\sqrt{16u-16}+27\sqrt{\dfrac{u-1}{81}}=4\)
Áp dụng quy tắc khai phương một phương, hãy tính :
\(\sqrt{\frac{9}{169}}\) ; \(\sqrt{\frac{25}{144}}\) ; \(\sqrt{1\frac{9}{16}}\) ; \(\sqrt{2\frac{7}{81}}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\) Rút gọn biểu thức:a)\(\sqrt{4.36}+\sqrt{\frac{25}{81}\frac{16}{49}}\)