\(\Rightarrow2\cdot3^{x+1}=3^{12}\cdot18=3^{14}\cdot2\)
=>x+1=14
hay x=13
`2 . 3^x + 1 = 10. 3^12 + 8 . 3^12`
` 2 . 3^x + 1 = 3^12 . (10 + 8)`
`2 . 3^x + 1 = 3^14 . 2`
`=> 1 = 3^14 . 2 - 2 . 3^x`
`=> 1 = 2(3^14 - 3^x)`
Vì `2(3^14 - 3^x) vdots 2` mà `1 cancel vdots 2`
`=>` Ptr vô nghiệm
`2.3^(x+1)=10.3^12+8.3^12`
`2.3^(x+1)=3^12 . (10+8)`
`2.3^(x+1)=3^12 . 18`
`2.3^(x+1)=3^12 . 3^2 . 2`
`2.3^(x+1)=3^14 . 2`
`3^(x+1)=3^14`
`x+1=14`
`x=13`
`2 . 3^(x+1) = 10 . 3^12 + 8 . 3^12`
`= 2 . 3^(x+1) = 3^12 . 18 = 3^14 . 2`
`=> x + 1 = 14 => x = 13`