Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Minh Tuấn Huy

2/3^3+3/4^3+4/5^3+...+2021/2022^3+2022/2023^3 Chứng tỏ rằng giá trị này không phải là số tự nhiên

Bùi thảo ly
19 tháng 7 2023 lúc 16:03

Để chứng tỏ rằng dãy giá trị 2/3^3, 3/4^3, 4/5^3, ..., 2021/2022^3, 2022/2023^3 không phải là số tự nhiên, chúng ta có thể sử dụng phương pháp giả sử đối chứng.

Giả sử rằng dãy giá trị này là số tự nhiên, tức là tất cả các phần tử trong dãy đều là các số tự nhiên. Ta xem xét phần tử cuối cùng của dãy, tức là 2022/2023^3.

Nếu 2022/2023^3 là số tự nhiên, thì 2022/2023^3 + 1 cũng phải là số tự nhiên.

Tuy nhiên, nếu ta tính giá trị của biểu thức 2022/2023^3 + 1,

ta sẽ có: 2022/2023^3 + 1 = (2022 + 2023^3) / 2023^3

Với các giá trị số học, ta biết rằng tỷ số của hai số nguyên không thể tạo ra một số nguyên khác. Do đó, biểu thức trên không thể là số tự nhiên.

Vậy, ta có thể kết luận rằng dãy giá trị 2/3^3, 3/4^3, 4/5^3, ..., 2021/2022^3, 2022/2023^3 không phải là số tự nhiên.


Các câu hỏi tương tự
Xem chi tiết
Xem chi tiết
Xem chi tiết
Lê Tiến Hải
Xem chi tiết
NO NAME
Xem chi tiết
Nguyễn Việt Hà
Xem chi tiết
Nguyễn Minh Hải
Xem chi tiết
*•.¸♡Bค๔✿B๏ץ ♡¸.•*
Xem chi tiết