\(\dfrac{2-x}{4}< 4\)
\(\Leftrightarrow2-x< 16\)
\(\Leftrightarrow-x< 16-2\)
\(\Leftrightarrow-x< 14\)
\(\Leftrightarrow x>-14\)
\(=>\dfrac{2-x}{4}< \dfrac{4}{1}\)
\(=>x-2< 1\)
\(=>-x>-1=>x>1\)
\(\dfrac{2-x}{4}< 4\)
\(\Leftrightarrow2x-4< 16\)
\(\Leftrightarrow2x< 16+4\)
\(\Leftrightarrow2x< 20\)
\(\Leftrightarrow x< 10\)
Vậy \(S=\left\{x|x< 10\right\}\)