\(< =>\left(4:4\right).2^n=4< =>2^n=2^2=>n=2\)
\(\left(2^2\div4\right)\times2^n=4\)
\(\left(4\div4\right)\times2^n=4\)
\(1\times2^n=4\)
\(2^n=4\div1\)
\(2^n=4\)
\(2^n=2^2\)
\(n=2\)
( 22 : 4) . 2n = 4
( 4 : 4 ) . 2n = 4
1 . 2n = 22
2n = 22
=> n = 2
`(2^2 : 4) . 2^n = 4`
`=> (4 : 4) . 2^n= 4`
`=> 1 . 2^n = 4`
`=> 2^n = 4`
`=>` 2^n = 2^2`
`=> n = 2`
\(\left(2^2:4\right).2^n=4\)
\(\left(4:4\right).2^n=4\)
\(1.2^n=4\)
\(2^n=4:1\)
\(2^n=4\)
\(2^n=2^2\)
\(\Rightarrow n=2\)