Biết x , y , z khác 0 và x + y +z = 1/x + 1/y + 1/z .
Chứng minh y ( x2 - yz ) ( 1 -xz ) = x ( 1 - yz ) ( y2 - xz )
làm bài này giúp mk nha , mk hứa sẽ tích
Chứng minh rằng nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) với x khác y, yz,xz khác 1, x, y, z khác 0 thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
a) CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-zx\right)}\)với x khác y , xyz khác 0 , yz khác 1 , xz khác 1 m thì xy+xz+yz= xyz(x+y+z)
:b) Cho a, b , c là các số thực khác 0 và thỏa mãn :
\(\hept{\begin{cases}a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\\a^{2017}+b^{2017}+c^{2017}=1\end{cases}}\)
Tính giá trị của biểu thức P= \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
Cho x; y; z khác ± 1 và xy + yz + xz = 1. Chọn câu đúng?
A. x 1 − x 2 + y 1 − y 2 + z 1 − z 2 = xyz (1 − x 2 )(1 − y 2 )(1 − z 2 )
B. x 1 − x 2 + y 1 − y 2 + z 1 − z 2 = 3xyz (1 − x 2 )(1 − y 2 )(1 − z 2 )
C. x 1 − x 2 + y 1 − y 2 + z 1 − z 2 = 4xyz (1 − x 2 )(1 − y 2 )(1 − z 2 )
D. x 1 − x 2 + y 1 − y 2 + z 1 − z 2 = xyz(x + y + z) (1 − x 2 )(1 − y 2 )(1 − z 2 )
2) Cho các số thực x, y, z thỏa mãn đồng thời các điều kiện sau x + y + z = 2, x^2 + y^2 z^2 = 18 và xyz = -1. Tính giá trị của
S = 1/(xy + z - 1) + 1/(yz + x -1) + 1/(zx + y -1)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
Cho 1/x+1/y+1/z=0(x,y,z khác 0). Tính yz/x2+xz/y2+xy/z2
cho x,y,z khác 0 và\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\)
cmr \(y\left(y^2-yz\right)\left(1-xz\right)=x\left(1-yz\right)\left(y^2-xz\right)\)
cho x,y,z đôi một khác nhau và 1/x+1/y+1/z=0
tính giá trị của biểu thức A=(yz/x^2+yz)+(xz/y^2+2xz)+(xy/z^2+2xy)