2. Cho a,b,c là ba số thực không âm thỏa mãn a+b+c= \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). CMR:\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
2. Cho a,b,c là ba số thực không âm thỏa mãn a+b+c= \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). CMR:\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cho a,b,c là 3 số thực không âm thỏa mãn a + b+ c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\) 2.CMR: \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cho a, b, c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\).
Chứng minh rằng \(\frac{a+b}{\sqrt{a}+\sqrt{b}}+\frac{b+c}{\sqrt{b}+\sqrt{c}}+\frac{c+a}{\sqrt{c}+\sqrt{a}}\le4\left(\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\frac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\frac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right)\)
Cho 3 số thực dương a,b,c thỏa mãn \(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)
CMR : \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{-2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
Cho số thực a,b,c thoả mãn a+b+c =\(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)2
Cmr \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cho a, b, c là ba số thực dương thỏa mãn ab + bc + ac = 1. Tính
\(P=a\sqrt{\frac{\left(1+c^2\right)\left(1+b^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+c^2\right)\left(1+a^2\right)}{1+c^2}}\)
Cho các số dương a, b, c thỏa mãn ab+bc+ca=1.
CMR: \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3+\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}+\sqrt{\frac{\left(b+c\right)\left(b+a\right)}{b^2}}+\sqrt{\frac{\left(c+a\right)\left(c+b\right)}{c^2}}\)
cho các số a,b,c dương thỏa mãn: a + b + c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) = 2
CMR : \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)