c: Ở hai hàm số trên, nếu lấy biến x cùng một giá trị thì f(x) sẽ nhỏ hơn g(x) 3 đơn vị
c: Ở hai hàm số trên, nếu lấy biến x cùng một giá trị thì f(x) sẽ nhỏ hơn g(x) 3 đơn vị
a) Cho hàm số
y = f ( x ) = 2 3 x
Tính: f(-2); f(-1); f(0); f(1/2); f(1); f(2); f(3)
b) Cho hàm số
y = g ( x ) = 2 3 x + 3
Tính: g(-2); g(-1); g(0); g(1/2); g(1); g(2); g(3)
c) Có nhận xét gì về giá trị của hai hàm số đã cho ở trên khi biến x lấy cùng một giá trị?
a) Cho hàm số y=f(x)=3/4x.Tính f(-2);f(0);f(1)
b) Cho hàm số y=g(x)=3/4x+3.Tính g(-2);g(0);g(1)
cho hàm số y=f(x)=5x-3 vày=g(x)=-4x+1. tính
a)f(-2) - g\(\left(\dfrac{1}{2}\right)\)
b) 2.\(f^2\)(-3) -3.\(g^2\)(-2)
1. Cho hàm số y = g(x) = 4x² - 1
a. Tính g(-2), g(0.5), g(√5), g(-0.5)
b. Tìm giá trị của biến x để g(x) = 3
c. CM: g(x) = g(-x) với mọi x ∈ R
2. Cho hàm số y = f(x) = 5x + 3. Lấy hai giá trị của biến x1, x2 bất kì ∈ R sao cho x1 < x2. Cm: f(x1) < f(x2). Kết luận tính biến thiên của hàm số y = f(x)?
Mình cần gấp giúp mình với
Cho hàm số f(x)=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) Tìm các g/trị của x để hàm số xác định
b) Tính f(\(4-2\sqrt{3}\)) và f(\(a^2\)) với a< -1
c) Tìm x sao cho f(x)=f(\(x^2\))
cho hai hàm số : f(x) = x^2 và g(x) = 3 - x .
a) Tính f(-3) , f(-1/2) , f(0) , g(1) , g(2) , g(3) .
b) Xác định a để 2f(a) = g(a) .
cho hàm số f(x)= 5x-3 và g(x)=\(\dfrac{-1}{2}\)x+1
a)tìm a sao cho: f(a)= g(a)
b) tìm b sao cho: f(b-2) = g(2b+4)
tính giá trị của hàm số
a) y= f(x)= x2 +x-2 tại x0 =\(\dfrac{1}{2}\)
b)y=f(x)=\(\dfrac{2\sqrt{3}}{x^2+1}\) tại x0 =\(\sqrt{3}\)
Đạo hàm y 0 = −3x 2 + 6x + m − 1. Hàm số đã cho đồng biến trên khoảng (0; 3) khi và chỉ khi y 0 > 0, ∀x ∈ (0; 3). Hay −3x 2 + 6x + m − 1 > 0, ∀x ∈ (0; 3) ⇔ m > 3x 2 − 6x + 1, ∀x ∈ (0; 3) (∗). Xét hàm số f(x) = 3x 2 − 6x + 1 trên đoạn [0; 3] có f 0 (x) = 6x − 6; f 0 (x) = 0 ⇔ x = 1. Khi đó f(0) = 1, f(3) = 10, f(1) = −2, suy ra max [0;3] f(x) = f(3) = 10. Do đó (∗) ⇔ m > max [0;3] f(x) ⇔ m > 10. Vậy với m > 10 thì hàm số đã cho đồng biến trên khoảng (0; 3).