\(\Leftrightarrow\frac{1}{x^2+5x+6}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+x}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x^2+5x+6}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+x}-\frac{3}{10}=0\)
\(\Leftrightarrow-\frac{3\left(x^2+3x-10\right)}{10x\left(x+3\right)}=0\)
\(\Leftrightarrow3\left(x^2+3x-10\right)=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x-2=0\)hoặc\(x+5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\Leftrightarrow\frac{\left(x+3\right)-x}{x\left(x+3\right)}=\frac{3}{10}\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)
<=>x(x+3)=10 <=> x2+3x=10 <=> x2+3x-10=0
<=>-(x2-3x+10)=0
<=>x2-3x+10=0
<=>x2-2.x.\(\frac{3}{2}\)+ \(\left(\frac{3}{2}\right)^2+\frac{31}{4}\)=0
<=> \(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)=0
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}>0\) (với mọi x)
=>PT vô nghiệm
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\Leftrightarrow\frac{x+3-x}{x\left(x+3\right)}=\frac{3}{10}\Leftrightarrow\frac{3}{x^2+3x}=\frac{3}{10}\Leftrightarrow x^2+3x=10\)
\(\Leftrightarrow x^2+3x-10=0\Leftrightarrow x^2+5x-2x-10=0\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-5\end{cases}}}\)