\(\dfrac{1}{\left(x+2000\right)\left(x+2001\right)}+\dfrac{1}{\left(x+2001\right)\left(x+2002\right)}+...+\dfrac{1}{\left(x+2009\right)\left(x+2010\right)}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2001}+\dfrac{1}{x+2001}-\dfrac{1}{x+2002}+...+\dfrac{1}{x+2009}-\dfrac{1}{x+2010}=\dfrac{10}{11}\)
\(\Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2010}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{x+2010-x-2000}{\left(x+2000\right)\left(x+2010\right)}=\dfrac{10}{11}\)
\(\Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2010}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{10}{\left(x+2000\right)\left(x+2010\right)}=\dfrac{10}{11}\\ \Leftrightarrow\left(x+2000\right)\left(x+2010\right)=11\\ \Leftrightarrow...\)