Ta có: a = 4b + 1
=> a + 7 = 4b + 1 + 7= 4b + 8 \(⋮\)b
=> 8 \(⋮b\) và b là số tự nhiên
=> b\(\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)
+ b = 1=> a = 5 => a + 2b = 5 +2 .1 = 7 là số nguyên tố ( thỏa mãn )
+) b = 2 => a = 9 => a + 2b = 9 + 2 . 2 = 13 là số nguyên tố ( thỏa mãn )
+) b = 4 => a = 17 => a + 2b = 17 + 2.4 = 25 không là số nguyên tố ( loại )
+) b = 8 => a = 33 => a + 2b = 49 không là số nguyen tố ( loại )
Vậy có các cặp (a; b ) là ( 5; 1) và ( 9; 2).