1.\(\sqrt{11-4\sqrt{7}}=\sqrt{11-2\cdot2\sqrt{7}}\)=\(\sqrt{7-2\cdot2\cdot\sqrt{7}+4}=\sqrt{\left(\sqrt{7}-2\right)^2}\)=\(\sqrt{7}-2\)
2.\(\left(3-\sqrt{9}\right)\sqrt{11+6\sqrt{6}}=\left(3-3\right)\sqrt{11+6\sqrt{6}}\)=\(0\cdot\sqrt{11+6\sqrt{6}}=0\)
3.\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\)\(\sqrt{15-2\cdot3\cdot\sqrt{6}}+\sqrt{35-2\cdot2\cdot3\cdot\sqrt{2}\cdot\sqrt{3}}\)
=\(\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{35-2\cdot\left(2\sqrt{2}\right)\left(3\sqrt{3}\right)}\)=\(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{27-2\cdot\left(2\sqrt{2}\right)\left(3\sqrt{3}\right)+8}\)
= \(3-\sqrt{6}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)=\(3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)