1Phương trình bậc nhất 1 ẩn: là phương trình có dạng ax+b=0(a≠0).Thông thường để giải phương trình này ta chuyển những hạng tử có chứa biến về 1 vế, những hạng tử ko chứa biến về 1 vế
1)5x-3=16-8x 2)-7-5x=8+9x 3)18-5x=7+3x 4)9-7x=4x+3 5)11-11x=21-5x
6)2(-7+3x)=5-(x+2) 7)5(8+3x)+2(3x-8)=0 8)3(2x-1)-3x+1=0 9)-4(x-3)=6x+(x-3)
10)-5-(x+3)=2-5x
1, <=> 13x = 19 <=x = 19/13
2, <=> 14x = - 15 <=> x = -15/14
3, <=> 8x = 11 <=> x = 11/8
4, <=> 9 - 7x = 4x + 3 <=> 11x = 6 <=> x = 6/11
5, <=> 11-11x = 21 - 5x <=> 6x = - 10 <=> x = -5/3
6, <=> -12 + 6x = 3 - x <=> 7x = 15 <=> x = 15/7
7, <=> 40 + 15x + 6x - 16 = 0 <=> 21x = - 24 <=> x = -8/7
8, <=> 6x - 3 - 3x + 1 = 0 <=> 3x - 2 = 0 <=> x = 2/3
9, <=> -4x + 12 = 7x - 3 <=> 11x = 15 <=> x = 15/11
10, <=> -5 - x - 3 = 2 - 5x <=> -8 - x = 2 - 5x <=> 4x = 10 <=> x = 5/2
\(1,\Leftrightarrow5x+8x=16+3\)
\(\Leftrightarrow13x=19\)
\(\Leftrightarrow x=\dfrac{19}{13}\)
Vậy \(S=\left\{\dfrac{19}{13}\right\}\)
\(b,\Leftrightarrow-5x-9x=8+7\)
\(\Leftrightarrow-14x=15\)
\(\Leftrightarrow x=-\dfrac{15}{14}\)
Vậy \(S=\left\{-\dfrac{15}{14}\right\}\)
\(c,-5x-3x=7-18\)
\(\Leftrightarrow-8x=-11\)
\(\Leftrightarrow x=\dfrac{11}{8}\)
\(d\Leftrightarrow,7x-4x=3-9\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-2\)
Vậy \(S=\left\{-2\right\}\)
\(5,\Leftrightarrow-11x+5x=21-11\)
\(\Leftrightarrow-6x=10\)
\(\Leftrightarrow x=-\dfrac{5}{3}\)
Vậy \(S=\left\{-\dfrac{5}{3}\right\}\)
\(6,\Leftrightarrow-14+6x=5-x-2\)
\(\Leftrightarrow6x+x=5+14-2\)
\(\Leftrightarrow7x=17\)
\(\Leftrightarrow x=\dfrac{17}{7}\)
Vậy \(S=\left\{\dfrac{17}{7}\right\}\)
\(7,40+15x+6x-16=0\)
\(\Leftrightarrow15x+6x=16-40\)
\(\Leftrightarrow21x=-24\)
\(\Leftrightarrow x=-\dfrac{24}{21}\)
Vậy \(S=\left\{-\dfrac{24}{21}\right\}\)
\(8,6x-3-3x+1=0\)
\(\Leftrightarrow6x-3x=3-1\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(S=\left\{\dfrac{2}{3}\right\}\)
Câu (9) và (10) bạn áp dụng như các câu trên, nhân các ngoặc và đổi dấu sau khi bỏ ngoặc hoặc chuyển vế.