Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ILoveMath

1,Ghpt:\(\left\{{}\begin{matrix}x^2+3y+1=\left(x+3\right)\sqrt{y^2+1}\\\sqrt{2x\left(x+y\right)^3}+y\sqrt{2\left(x^2+y^2\right)}=3\left(x^2+y^2\right)\end{matrix}\right.\)

2,Cho a,b,c,d∈Z tm:\(a^2+b^2+c^2=d^2\)

CMR:\(abc⋮4\) (xét chẵn lẻ)

Nguyễn Việt Lâm
12 tháng 1 2022 lúc 22:55

Ta có:

\(\sqrt{2x\left(x+y\right)^3}+y\sqrt{2\left(x^2+y^2\right)}\)

\(=\sqrt{\left(2x^2+2xy\right)\left(x^2+2xy+y^2\right)}+\sqrt{2}y.\sqrt{x^2+y^2}\)

\(\le\sqrt{\left(2x^2+2xy+2y^2\right)\left(x^2+2xy+y^2+x^2+y^2\right)}=2\left(x^2+xy+y^2\right)\)

\(\Rightarrow3\left(x^2+y^2\right)\le2\left(x^2+xy+y^2\right)\)

\(\Rightarrow\left(x-y\right)^2\le0\)

\(\Rightarrow x=y\)

Thế vào pt đầu:

\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

Đặt \(\sqrt{x^2+1}=t\Rightarrow t^2-\left(x+3\right)t+3x=0\)

\(\Delta=\left(x+3\right)^2-12x=\left(x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+3-\left(x-3\right)}{2}=3\\t=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\)

\(\Rightarrow...\)

2. 4 biến xét dài quá, để người khác

Nguyễn Việt Lâm
13 tháng 1 2022 lúc 22:26

2.

\(a^2+b^2+c^2+d^2=2d^2\) chẵn

\(a^2+b^2+c^2+d^2-a-b-c-d=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) luôn chẵn

\(\Rightarrow a+b+c+d\) chẵn

\(\Rightarrow\) trong 4 số, luôn có 2 chẵn 2 lẻ, hoặc 4 số đều chẵn 

Cả 2 trường hợp đều suy ra abcd chia hết cho 4 (tích của ít nhất 2 số chẵn)

Nguyễn Việt Lâm
14 tháng 1 2022 lúc 5:47

Ủa mà nhìn lại bài 2 làm sai (nhìn sai đề thành chứng minh abcd chia hết cho 4, trong khi thực tế ko có d)

Vậy làm như sau:

Do bình phương của 1 số nguyên chia 4 chỉ có thể dư 0 hoặc 1, \(\Rightarrow a^2+b^2+c^2\) chia 4 dư 0, 1, 2, 3 (tùy thuộc trong số a;b;c có bao nhiêu số là chẵn)

Trong khi đó \(d^2\) chia 4 dư 1 nên ta chỉ có 2 TH sau:

TH1: \(a^2+b^2+c^2\) và \(d^2\) đều chia hết cho 4

\(\Rightarrow a;b;c\) đều chẵn \(\Rightarrow abc⋮4\)

TH2: \(a^2+b^2+c^2\) và \(d^2\) đều chia 4 dư 1

\(\Rightarrow\) Trong a;b;c có đúng 1 số lẻ và 2 số chẵn

\(\Rightarrow abc⋮4\)


Các câu hỏi tương tự
huy tạ
Xem chi tiết
DUTREND123456789
Xem chi tiết
ILoveMath
Xem chi tiết
mynameisbro
Xem chi tiết
ILoveMath
Xem chi tiết
Nguyên Hoàng
Xem chi tiết
ILoveMath
Xem chi tiết
ILoveMath
Xem chi tiết
Lizy
Xem chi tiết