Ta có:
\(\sqrt{2x\left(x+y\right)^3}+y\sqrt{2\left(x^2+y^2\right)}\)
\(=\sqrt{\left(2x^2+2xy\right)\left(x^2+2xy+y^2\right)}+\sqrt{2}y.\sqrt{x^2+y^2}\)
\(\le\sqrt{\left(2x^2+2xy+2y^2\right)\left(x^2+2xy+y^2+x^2+y^2\right)}=2\left(x^2+xy+y^2\right)\)
\(\Rightarrow3\left(x^2+y^2\right)\le2\left(x^2+xy+y^2\right)\)
\(\Rightarrow\left(x-y\right)^2\le0\)
\(\Rightarrow x=y\)
Thế vào pt đầu:
\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
Đặt \(\sqrt{x^2+1}=t\Rightarrow t^2-\left(x+3\right)t+3x=0\)
\(\Delta=\left(x+3\right)^2-12x=\left(x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+3-\left(x-3\right)}{2}=3\\t=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\)
\(\Rightarrow...\)
2. 4 biến xét dài quá, để người khác
2.
\(a^2+b^2+c^2+d^2=2d^2\) chẵn
\(a^2+b^2+c^2+d^2-a-b-c-d=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) luôn chẵn
\(\Rightarrow a+b+c+d\) chẵn
\(\Rightarrow\) trong 4 số, luôn có 2 chẵn 2 lẻ, hoặc 4 số đều chẵn
Cả 2 trường hợp đều suy ra abcd chia hết cho 4 (tích của ít nhất 2 số chẵn)
Ủa mà nhìn lại bài 2 làm sai (nhìn sai đề thành chứng minh abcd chia hết cho 4, trong khi thực tế ko có d)
Vậy làm như sau:
Do bình phương của 1 số nguyên chia 4 chỉ có thể dư 0 hoặc 1, \(\Rightarrow a^2+b^2+c^2\) chia 4 dư 0, 1, 2, 3 (tùy thuộc trong số a;b;c có bao nhiêu số là chẵn)
Trong khi đó \(d^2\) chia 4 dư 1 nên ta chỉ có 2 TH sau:
TH1: \(a^2+b^2+c^2\) và \(d^2\) đều chia hết cho 4
\(\Rightarrow a;b;c\) đều chẵn \(\Rightarrow abc⋮4\)
TH2: \(a^2+b^2+c^2\) và \(d^2\) đều chia 4 dư 1
\(\Rightarrow\) Trong a;b;c có đúng 1 số lẻ và 2 số chẵn
\(\Rightarrow abc⋮4\)