a) Chứng minh tam giác BDE đồng dạng tam giác CAE ( trường hợp góc-góc)
=> \(\frac{ED}{EA}=\frac{EB}{EC}=>EA.EB=ED.EC\)
b) Tam giác BDE đồng dạng tam giác CAE (chứng minh trên)
=> \(\frac{ED}{EA}=\frac{EB}{EC}=>\frac{ED}{EB}=\frac{EA}{EC}\)
Có góc E chung nên tam giác EAD đồng dạng tam giác ECB
=> góc EAD = góc ECB (2 góc tương ứng)
c) Kẻ MI vuông góc tam giác BC
Tam giác BMI đồng dang tam giác BCD (g-g)
=>BM.BD=BI.BC (1)
Tam giác CMI đồng dạng tam giác CBA (g.g)
=>CM.CA=IC.BC (2)
Từ 1 và 2 => BM.BD+CM.CA=BC^2 không đổi vì BC cố định
em mới học lớp 7 thôi
Bó tay + bó chân . com .vn