cái này mik chịu, mik mới có lớp 7
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
2, \(T=\frac{x}{1-yz}+\frac{y}{1-xz}+\frac{z}{1-xy}\)
Áp dụng cosi ta có \(yz\le\frac{y^2+z^2}{2}\)
=> \(\frac{x}{1-yz}\le\frac{x}{1-\frac{y^2+z^2}{2}}=\frac{2x}{2-y^2-z^2}=\frac{2x}{1+x^2}\)
Lại có \(x^2+\frac{1}{3}\ge2x\sqrt{\frac{1}{3}}\)
=> \(\frac{x}{1-yz}\le\frac{2x}{\frac{2}{3}+2x\sqrt{\frac{1}{3}}}=\frac{x}{\frac{1}{3}+x\sqrt{\frac{1}{3}}}\le\frac{x.1}{4}\left(\frac{1}{\frac{1}{3}}+\frac{1}{x\sqrt{\frac{1}{3}}}\right)=\frac{1}{4}.\left(3x+\sqrt{3}\right)\)
Khi đó \(T\le\frac{1}{4}.\left(3x+3y+3z+3\sqrt{3}\right)\)
Mà \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=\sqrt{3}\)
=> \(T\le\frac{6\sqrt{3}}{4}=\frac{3\sqrt{3}}{2}\)
Vậy \(MaxT=\frac{3\sqrt{3}}{2}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Ta có \(x^2+y^2+z^2=1\)
=> \(0\le x,y,z\le1\)
=> \(\hept{\begin{cases}x\ge x^2\\y\ge y^2\\z\ge z^2\end{cases}}\)=> \(x+y+z\ge x^2+y^2+z^2=1\)(1)
Theo cosi ta có \(xy+yz+xz\le x^2+y^2+z^2=1\)(2)
Xét \(T=\frac{x}{1-yz}+\frac{y}{1-xz}+\frac{z}{1-xy}\ge1\)
<=> \(\frac{x\left(1-xz\right)\left(1-xy\right)+y\left(1-yz\right)\left(1-xy\right)+z\left(1-xz\right)\left(1-zy\right)}{\left(1-yz\right)\left(1-xz\right)\left(1-xy\right)}\ge1\)
<=> \(\frac{x+y+z-x^2\left(y+z\right)-y^2\left(x+z\right)-z^2\left(x+y\right)+xyz\left(x^2+y^2+z^2\right)}{\left(1-yz\right)\left(1-xz\right)\left(1-xy\right)}\ge1\)
<=> \(\frac{\left(x+y+z\right)\left(x^2+y^2+z^2\right)-x^2\left(y+z\right)-y^2\left(x+z\right)-z^2\left(x+y\right)+xyz}{1-xy-yz-xz+xyz\left(x+y+z\right)-x^2y^2z^2}\ge1\)
<=> \(\frac{x^3+y^3+z^3+xyz}{1-xy-yz-xz+xyz\left(x+y+z\right)-x^2y^2z^2}\ge1\)
<=> \(\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+4xyz}{1-yz-yz-xz+xyz\left(x+y+z\right)-x^2y^2z^2}\ge1\)
<=> \(\left(x+y+z\right)\left(1-yz-xy-xz\right)+4xyz\ge1-yz-xz-xy+xyz-x^2y^2z^2\)
<=> \(\left(x+y+z\right)\left(1-xz-yz-xz\right)+4xyz+x^2y^2z^2\ge1-xz-xy-yz+xyz\left(x+y+z\right)\)
Mà \(x+y+z\le\sqrt{3}\)
nên BĐT<=> \(\left(x+y+z\right)\left(1-yz-xz-xy\right)+4xyz\ge1-yz-xz-xy+xyz.\sqrt{3}\)
<=> \(\left(x+y+z-1\right)\left(1-yz-xz-xy\right)+\left(4-\sqrt{3}\right)xyz\ge0\)( luôn đúng )( do (1) ; (2) )
Vậy \(MinT=1\) khi \(\hept{\begin{cases}x=0\\y=0\\z=1\end{cases}}\)và các hoán vị
mình cảm ơn bạn Trần Phúc Khang nhiều
cảm ơn nhiều nhé
có cái lồn địt con bà m