a) Để thu gọn đa thức Px, ta sắp xếp các hạng tử theo lũy thừa giảm dần của biến x:
Px = x⁴ - 2x³ + x - 5 + / 3x / -2x + 2x³ = x⁴ + 2x³ - 2x³ + x + / 3x / -2x = x⁴ + (2x³ - 2x³) + (x + / 3x / -2x) = x⁴ + (x + / 3x / -2x)
Tương tự, để thu gọn đa thức Qx, ta sắp xếp các hạng tử theo lũy thừa giảm dần của biến x:
Qx = (2x² - x³) - (2 - x⁴ - x³) - 3x = -x³ + 2x² - 2 + x⁴ + x³ - 3x = x⁴ + (-x³ + x³) + 2x² - 3x - 2 = x⁴ + 2x² - 3x - 2
b) Để tính Ax = Px - Qx, ta trừ từng hạng tử của Qx từ Px:
Ax = (x⁴ + (x + / 3x / -2x)) - (x⁴ + 2x² - 3x - 2) = x⁴ + x + / 3x / -2x - x⁴ - 2x² + 3x + 2 = x⁴ - x⁴ + x + / 3x / -2x - 2x² + 3x + 2 = x + / 3x / -2x - 2x² + 3x + 2
c) Để chứng tỏ x = 1 là một nghiệm của đa thức Ax, ta thay x = 1 vào Ax và kiểm tra xem kết quả có bằng 0 hay không:
Ax = 1 + / 3(1) / -2(1) - 2(1)² + 3(1) + 2 = 1 + 3/2 - 2 + 3 + 2 = 6.5
Vì Ax không bằng 0 khi thay x = 1, nên x = 1 không phải là một nghiệm của đa thức Ax.
a: P(x)=x^4-2x^3+x+2x^3-2x-5+3x
=x^4-x+3x-5
=x^4+2x-5
Q(x)=2x^2-x^3-2+x^4+x^3-3x
=x^4+2x^2-3x-2
b: A(x)=P(x)-Q(x)
=x^4+2x-5-x^4-2x^2+3x+2
=-2x^2+5x-3
c: A(1)=-2+5-3=0
=>x=1 là nghiệm của A(x)