\(G=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+10\left(x-2y\right)+25+2\)
\(=\left[\left(x-2y\right)^2+2.5\left(x-2y\right)+25\right]+\left(y-1\right)^2+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Vì \(\hept{\begin{cases}\left(x-2y+5\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\Rightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2\ge0}\)
\(\Rightarrow G=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+3=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy Gmin = 2 khi x = -3, y = 1