\(A=3^0+3^1+3^2+...+3^{138}\)
\(3\cdot A=3^1+3^2+3^3+...+3^{139}\)
\(A=(3^{139}-3^0):2\)
\(A=\left(3^{139}-1\right):2\)
Đặt A = 1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸
⇒ 3A = 3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹
⇒ 2A = 3A - A
= (3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹) - (1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸)
= 3¹³⁹ - 1
⇒ A = (3¹³⁹ - 1)/3
⇒ 1 + 3 + 3¹ + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸
= (3¹³⁹ - 1)/3 + 3
= (3¹³⁹ + 2)/3