Đặt A = 12 + 22 + 32 + .... + 20152
=> A = 1.1 + 2.2 + 3.3 + .... + 2015.2015
=> A = 1.( 2 - 1 ) + 2.( 3 - 1 ) + 3.( 4 - 1 ) + ... + 2015.( 2016 - 1 )
=> A = 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + .... + 2015.2016 - 2015
=> A = ( 1.2 + 2.3 + 3.4 + .... + 2015.2016 ) - ( 1 + 2 + 3 + ... + 2015 )
=> A = \(\frac{2015.2016.2017}{3}-\frac{2015\left(2015+1\right)}{2}\)
=> A = 2731179360 - 2031120
=> A = 2729148240