Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\Rightarrow\frac{1}{x+1}=1-\frac{2009}{2010}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Rightarrow x+1=2010\)
\(\Rightarrow x=2010-1\)
\(\Rightarrow x=2009\)
Vậy x = 2009
=> 1-1/2+1/2-1/3+1/3- 1/4 +... +1/x -1/x+1 = 2009/1020
=> 1 - 1/x+1=2009/2010
=> (x+1-1)/x+1=2009/2010
=> x/x+1=2009/2010
=>x=2009