Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lizy

\(10x^2+3x-6=2\left(3x+1\right)\sqrt{2x^2-1}\)

Nguyễn Việt Lâm
15 tháng 1 lúc 22:48

ĐKXĐ: \(\left[{}\begin{matrix}x\ge\dfrac{1}{\sqrt{2}}\\x\le-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)

 Pt\(\Leftrightarrow8x^2-4-2\left(3x+1\right)\sqrt{2x^2-1}+2x^2+3x-2=0\)

\(\Leftrightarrow4\left(2x^2-1\right)-2\left(3x+1\right)\sqrt{2x^2-1}+2x^2+3x-2=0\)

Đặt \(\sqrt{2x^2-1}=t\)

\(\Rightarrow4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)

Coi pt trên là pt bậc 2 ẩn t tham số x, ta có:

\(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=x^2-6x+9=\left(x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{3x+1+x-3}{4}=\dfrac{2x-1}{2}\\t=\dfrac{3x+1-\left(x-3\right)}{4}=\dfrac{x+2}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x^2-1}=\dfrac{2x-1}{2}\\\sqrt{2x^2-1}=\dfrac{x+2}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{2x^2-1}=2x-1\left(\text{với }x\ge\dfrac{1}{2}\right)\\2\sqrt{2x^2-1}=x+2\left(\text{với }x\ge-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(2x^2-1\right)=\left(2x-1\right)^2\left(\text{với }x\ge\dfrac{1}{2}\right)\\4\left(2x^2-1\right)=\left(x+2\right)^2\left(\text{với }x\ge-2\right)\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}4x^2+4x-5=0\left(\text{với }x\ge\dfrac{1}{2}\right)\\7x^2-4x-8=0\left(\text{với }x\ge-2\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{6}}{2}\\x=\dfrac{-1-\sqrt{6}}{2}< \dfrac{1}{2}\left(loại\right)\\x=\dfrac{2+2\sqrt{15}}{7}\\x=\dfrac{2-2\sqrt{15}}{7}\end{matrix}\right.\)


Các câu hỏi tương tự
2012 SANG
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Thị Thu Phương
Xem chi tiết
nguyenquockhang
Xem chi tiết
Nguyễn Thanh
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
Minh Anh
Xem chi tiết
TTH CHANEL
Xem chi tiết
Xem chi tiết