Đặt \(A=\dfrac{10^{1987}+1}{10^{1988}+1};B=\dfrac{10^{1989}+1}{10^{1990}+1}\)
Ta có: \(A=\dfrac{10^{1987}+1}{10^{1988}+1}\)
\(\Leftrightarrow10A=\dfrac{10^{1988}+10}{10^{1988}+1}=1+\dfrac{9}{10^{1988}+1}\)
Ta có: \(B=\dfrac{10^{1989}+1}{10^{1990}+1}\)
\(\Leftrightarrow10B=\dfrac{10^{1990}+10}{10^{1990}+1}=1+\dfrac{9}{10^{1990}+1}\)
Ta có: \(10^{1988}+1< 10^{1990}+1\)
\(\Leftrightarrow\dfrac{9}{10^{1988}+1}>\dfrac{9}{10^{1990}+1}\)
\(\Leftrightarrow1+\dfrac{9}{10^{1988}+1}>1+\dfrac{9}{10^{1990}+1}\)
hay A>B