Lời giải:
a. Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2|+|x-8|=|x-2|+|8-x|\geq |x-2+8-x|=6$
Dấu "=" xảy ra khi $(x-2)(8-x)\geq 0$
$\Leftrightarrow 2\leq x\leq 8$
b. Vì $|2x-1|\geq 0; |y-3x|\geq 0$ với mọi $x,y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì:
$|2x-1|=|y-3x|=0$
$\Leftrightarrow x=\frac{1}{2}; y=\frac{3}{2}$
b) Ta có: \(\left|2x-1\right|\ge0\forall x\)
\(\left|y-3x\right|\ge0\forall x,y\)
Do đó: \(\left|2x-1\right|+\left|y-3x\right|\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3x=\dfrac{3}{2}\end{matrix}\right.\)