1. Ta có : 2x4 - 3x3 - 3x2 + 6x - 2
= 2x4 - 2x3 - x3 + x2 - 4x2 + 4x + 2x - 2
= 2x3( x - 1 ) - x2( x - 1 ) - 4x( x - 1 ) + 2( x - 1 )
= ( x - 1 )( 2x3 - x2 - 4x + 2 )
= ( x - 1 )[ x2( 2x - 1 ) - 2( 2x - 1 ) ]
= ( x - 1 )( 2x - 1 )( x2 - 2 )
=> ( 2x4 - 3x3 - 3x2 + 6x - 2 ) : ( x2 - 2 ) = ( x - 1 )( 2x - 1 ) = 2x2 - 3x + 1
2. \(\left(15x^4y^6-12x^3y^4-18x^2y^3\right)\div\left(-6x^2y^2\right)\)
\(=\frac{15x^4y^6}{-6x^2y^2}-\frac{12x^3y^4}{-6x^2y^2}-\frac{18x^2y^3}{-6x^2y^2}\)
\(=-\frac{5}{2}x^2y^4+2xy^2+3y\)