1 thực hiện phép nhân
a, ( 2x^2 - 4x ) ( x - 1/2 )
b, ( x^2 - 2x + 1 ( x - 1 )
c, 3 ( y - x ) ( y^2 + xy + x^2 )
d, ( x - 1 ) ( x + 1 ) ( x - 2 )
2 rút gọn giá trị biểu thức ( dạng 2 : chứng tỏ biểu thức ko phụ thuộc vào giá trị của biến )
a, P = ( 2x + 1 ) ( 4x^2 - 2x + 1 ) tại x = 1/2
b, Q = ( X + 3y ) ( x^2 - 3xy + 9y^2 ) tại x = 1 và y = 1/3
3 chứng minh giá trị của biểu thức sau ko phụ thuộc vào giá trị của biến ( dạng 3 : tìm x biết x thỏa mãn điều kiện cho trc )
4 tìm x ( dạng 4 : chứng minh đẳng thức )
( 8x + 2 ) ( 1 - 3x ) + ( 6x - 1) ( 4x - 10 ) = -50
a. (2x2 - 4x)\(\left(x-\dfrac{1}{2}\right)\)
= 2x3 - x2 - 4x2 + 2
= 2x3 - 5x2 + 2
b. (x2 - 2x + 1)(x - 1)
= (x - 1)2(x - 1)
= (x - 1)3
c. 3(y - x)(y2 + xy + x2)
= 3(y3 - x3)
= 3y3 - 3x3
d. (x - 1)(x + 1)(x - 2)
= (x2 - 1)(x - 2)
= x3 - 2x2 - x + 2x
= x3 - 2x2 + x
= x3 - x2 - x2 + x
= x2(x - 1) - x(x - 1)
= (x2 - x)(x - 1)
= x(x - 1)(x - 1)
= x(x - 1)2