\(a,\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=4xy\\ b,\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)=\left(x+y-x+y\right)^2=4y^2\\ c,\left(x^2-1\right)\left(x^2-x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\\ =\left(x-1\right)\left(x^3+1\right)\\ =x^4-x^3+x-1\)
a. (x + y)2 - (x - y)2
= (x + y - x + y)(x + y + x - y)
= 2y . 2x
= 4xy
b. (x + y)2 + (x - y)2 - 2(x + y)(x - y)
= (x2 + 2xy + y2) + (x2 - 2xy + y2) - 2(x2 - y2)
= x2 + 2xy + y2 + x2 - 2xy + y2 - 2x2 + 2y2
= x2 + x2 - 2x2 + 2xy - 2xy + y2 + y2 + 2y2
= 4y2
c. (x2 - 1)(x2 - x + 1)
= x4 - x3 + x2 - x2 + x - 1
= x4 - x3 + x - 1
a: \(\left(x+y\right)^2-\left(x-y\right)^2=4xy\)
b: \(\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2=\left(x+y-x+y\right)^2=4y^2\)
c: \(\left(x^2-1\right)\cdot\left(x^2-x+1\right)\)
\(=\left(x^3+1\right)\left(x-1\right)\)
\(=x^4-x^3+x-1\)