Ta có ∆1' + ∆2' + ∆3' = b2 - ac + c2 - ab + a2 - bc = \(\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\)\(\ge\)0
Vậy có ít nhất 1 phương trình có nghiệm
Ta có ∆1' + ∆2' + ∆3' = b2 - ac + c2 - ab + a2 - bc = \(\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\)\(\ge\)0
Vậy có ít nhất 1 phương trình có nghiệm
1. Chứng minh rằng mọi số a, b, c khác 0 tồn tại 1 trong các phương trình sau phải có ngiệm:
ax2 + 2bc + c = 0 (1)
bx2 + 2cx + a = 0 (2)
cx2 + 2ax + b = 0 (2)
1. Chứng minh rằng mọi số a, b, c khác 0 tồn tại 1 trong các phương trình sau phải có ngiệm:
ax2 + 2bc + c = 0 (1)
bx2 + 2cx + a = 0 (2)
cx2 + 2ax + b = 0 (2)
1. Chứng minh rằng mọi số a, b, c khác 0 tồn tại 1 trong các phương trình sau phải có ngiệm:
ax2 + 2bc + c = 0 (1)
bx2 + 2cx + a = 0 (2)
cx2 + 2ax + b = 0 (2)
Chứng minh rằng với hai số tự nhiên a; b trong đó a khác 0.Tồn tại n sao cho b<na
Cho phương trình x2-mx-1=0
Không giải phương trình CHỨNG MINH rằng với mọi m ta luôn có |x1-x2 |>=2
cho phương trình
\(x^2-2mx+m^2-1=0\)
a) chứng minh rằng: phương trình luôn có 2 nghiệm phân biệt với mọi m
b) gọi x1, x2 là 2 nghiệm của phương trình. Tìm các giá trị của m sao cho \(x1^2+2mx2+m^2-5<0\)
giúp mình nha. Mình đang cần gấp
Cho phương trình: x2 - (2m - 1)x - m = 0 (*)
Chứng minh rằng phương trình (*) luôn có nghiệm với mọi giá trị của m.
Chứng minh rằng với a, b, c khác 0, ít nhất một trong các phương trình sau có nghiệm.
\(ax^2+2bx+c=0\),\(bx^2+2cx+a=0\),\(cx^2+2ax+b=0\)
Cho các số thực a,b thỏa a,b > 0 và 1/a + 1/b + 1/c = 0. Chứng minh rằng: căn a+c cộng căn b + c bằng căn a + b