Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Hữu Minh Triết

Cho các số thực a,b thỏa a,b > 0 và 1/a + 1/b + 1/c = 0. Chứng minh rằng: căn a+c cộng căn b + c bằng căn a + b

Phùng Công Anh
30 tháng 6 2023 lúc 9:46

Từ giả thiết ta có: `1/a+1/b+1/c=0=>ab+bc+ca=0`

Ta có:
`sqrt(a+c)+sqrt(b+c)=\sqrt(a+b)`

`=>(sqrt(a+c)+sqrt(b+c))^2=(sqrt(a+b))^2`

`<=>2c+2\sqrt((a+c)(b+c))=0`

`<=>2c+2\sqrt(ab+bc+ca+c^2)=0`

`<=>2\sqrt(c^2)+2c=0`

`<=>|c|+c=0(**)`

- Nếu `c>=0` thì `(**)<=>2c=0<=>c=0(` Mâu thuẫn với điều kiện toán học do không tồn tại `1/c=1/0)`

Vậy `c<0` do đó `(**)<=>0=0(` Luôn đúng `)`

Vậy ta có `đfcm`