1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA
a) Chứng minh: Tam giác OAH = tam giác OBH
b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN
c) Chứng minh AB vuông góc với OH
d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot
2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)
a) Chứng minh góc ABH = góc ACK
b) BH cắt CK tại E. Chứng minh AE vuông góc BC
c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?
3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
a) Chứng minh: Tam giác AMB = tam giác DMC
b) Chứng minh: AC = BD và AC //BD
c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC
4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ
a) Tính số đo góc ACB
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC
c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)