a: góc HNP+góc HPN=90 độ-góc MNP+90 độ-góc MPN
=180 độ-(góc MNP+góc MPN)
=góc M=40 độ
=>góc NHP=140 độ
b: góc INP+góc IPN=1/2(góc MNP+góc MPN)=1/2*140=70 độ
=>góc NIP=110 độ
c: góc NJP=2*góc M=80 độ
a: góc HNP+góc HPN=90 độ-góc MNP+90 độ-góc MPN
=180 độ-(góc MNP+góc MPN)
=góc M=40 độ
=>góc NHP=140 độ
b: góc INP+góc IPN=1/2(góc MNP+góc MPN)=1/2*140=70 độ
=>góc NIP=110 độ
c: góc NJP=2*góc M=80 độ
Cho tam giác ABC(AB<AC). Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc với AB tại H. Kẻ IK vuông góc với AC tại K
a) CMR AH=CK
b)CM AHIK nội tiếp đường tròn và tìm tâm của đường tròn đó
Cho tam giác MNP vuông ở N, phân giác ME. Gọi H là hình chiếu của E trên đường thẳng MP, đường thẳng EH cắt MN kéo dài tại I
A, CM NE=EH
b, ME là trung trực IP
c, kẻ NK là đg cao của tam giác MNP. Chứng minh NH là phân giác góc KNP, so sánh HK và HP
d, tam giác MNP cần thêm điều kiện gì để E là trọng tâm của tam giác MIP
µBài 5 Cho tam giác ABC (AB <AC). Tia phân giác của góc A cắt đường trung trực của BC tại I. kẻ IH vuông góc AB tại H. IK vuông góc AC tại K.
a/ Chứng minh : BH = CK.
b/ Chứng minh AHIK nội tiếp đường tròn và tÌm tâm đườn tròn đó
Cho tam giác MNP vuông tại M, có góc N= 60độ tia phân giác của góc N cắt MP tại Q .kẻ QH vuông với NP tại Hà (H thuộc NP) a) chứng minh rằng tâm giác MNQ = tam giác HNQ b) chứng minh rằng tam giác MNH là tâm giác đều
Cho tam giác MNP cân tại M . MI là đường trung tuyến của tam giác MNP. kẻ NK vuông góc MP và cắt MI tại O.
chứng minh MI vuông góc np.
C/m PO vuông góc MN tại J.
C/m PK=NJ.
C/m Jk song song NP.
Kẻ phân giác góc MNO cắt MO tại H tính số đo góc MKH
cho tam giác ABC(AB<AC). Tia phân giác của góc A cắt đường trung trực của BC tại I, kẻ IH vuông góc AB tại H. IK vuông góc ACtại K
a)CM:BH=CK
b)CM:AHIK nói tiếp đường tròn và tìm tâm đường tròn đó
cho tam giác mnp vuông tại m trên np lấy e sao cho ne=nm qua e kẻ kẻ đường thẳng vuông góc với np cắt mp ở i chứng minh tam giác mni=tam giác eni,c/m tam giác ime cân, so sánh im và ip,kẻ đường cao mk của tam giác mnp c/m me là tia p/g cua góc kmp , kẻ ph vuông góc với ni tại h cắt nm kéo dài ở f c/m E,I,F thẳng hàng
Cho tam giác ABC nhọn có AB<AC và nội tiếp đươngf tròn O đường kính AD. Gọi AH là đường cao của tam giác ABC. Qua B kẻ đường thẳng vuông góc với đường thẳng AD tại E.
a) cm: 2 HE vuong góc với AC
b) gọi F là hình chiếu vuông góc của điểm C lên đường thẳng AD và M là trung điểm của BC. Chứng minh M là tâm dường tròn ngoại tiếp tam giác HEF
cho tam giác MNP cân tại M (góc M<90 độ) . kẻ NH vuông góc với MP (H thuộc MP), PK vuông góc với MN (K thuộc MN). NH và PK cắt nhau tại E
a, cm tam giác NHP=tam giác PKN
b, cm tam giác ENP cân
c, cm ME là đường phân giác của góc NMP