1/Cho các số thực dương chứng minh:\(\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)
2/Cho a,b dương.Chứng minh:\(\left(\frac{a}{b}+\frac{b}{a}\right)+4\sqrt{2}\frac{a+b}{\sqrt{a^2+b^2}}\ge10\)
3/ Cho các số thực dương. Chứng minh: \(\left(a^2+2bc\right)\left(b^2+2ca\right)\left(c^2+2ab\right)\ge abc\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)\)
Chứng minh các đẳng thức sau
a) \(\left(\frac{2\sqrt{6}-\sqrt{3}}{2\sqrt{2}-1}+\frac{5+2\sqrt{5}}{2+\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
b) \(\frac{a-b}{b^2}\sqrt{\frac{a^2b^4}{a^2-2ab+b^2}}=-a\)(Với b<a<0
c)\(\left(\sqrt{a}+\frac{1-a\sqrt{a}}{1-\sqrt{a}}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)với a\(\ge0\),a khác 1
d) \(\left(\frac{3\sqrt{5}-\sqrt{15}}{\sqrt{27}-3}+\frac{2\sqrt{5}}{\sqrt{3}}\right)40\sqrt{15}=600\)
e) \(\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=1-x\)với x\(\ge0;x\ne1\)
BÀI TẬP: Cho \(a,b\ge0\).
Áp dụng \(a^3+b^3\ge a^2b+b^2a=ab\left(a+b\right)\) Chứng minh:
a) \(\sqrt[3]{4\left(a^3+b^3\right)}+\sqrt[3]{4\left(b^3+c^3\right)}+\sqrt[3]{4\left(c^3+a^3\right)}\ge2\left(a+b+c\right)\)\(\)Với \(a,b,c\ge0\)
b) \(\sqrt[3]{\sin A}+\sqrt[3]{\sin B}+\sqrt[3]{\sin C}\le\sqrt[3]{\cos\frac{A}{2}}+\sqrt[3]{\cos\frac{B}{2}}+\sqrt[3]{\cos\frac{C}{2}}\)Với A,B,C là ba góc của một tam giác
Chứng minh rằng :\(\frac{a+b}{\sqrt{a\left(2a+b\right)}+\sqrt{b\left(2b+a\right)}}\ge\frac{1}{2}\) với a,b là các số dương.
Cho a+b+c=1, a, b, c\(\ge0\). Chứng minh
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(a,b,c>0\right)\)
\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le3,5\)
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Cho a,b,c là cá số thực dương bất kì. Chứng minh rằng:
\(\sqrt{a\left(b+1\right)}+\sqrt{b\left(c+1\right)}+\sqrt{c\left(a+1\right)}\le\frac{3\left(a+1\right)\left(b+1\right)\left(c+1\right)}{2}\)
1. Chứng minh \(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}< 2\sqrt[3]{3}\)
2. a) Tính \(A=\frac{2b.\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\) với \(x=\frac{1}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\left(a,b>0\right) \)
b) Tính \(B=\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}\left(a+\frac{1}{a}\right);y=\frac{1}{2}\left(b+\frac{1}{b}\right)\left(a,b\ge1\right)\)
3. Cho x,y thỏa mãn \(xy\ge0\). Tính \(B=\left(\left|\sqrt{xy}+\frac{x}{2}+\frac{y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\frac{x}{2}-\frac{y}{2}\right|-\left|y\right|\right)\)
4. Cho \(\frac{2x+2\sqrt{x}+13}{\left(\sqrt{x}-2\right)\left(x+1\right)^2}=\frac{A}{\sqrt{x}-2}+\frac{B\sqrt{x}+C}{x+1}+\frac{D\sqrt{x}+E}{\left(x+1\right)^2}\). Tìm các số A,B,C,D,E để đẳng thức trên là đúng với mọi x
Chứng minh \(\sqrt{a^2-a+1}+\sqrt{b^2-b+1}\ge2\sqrt[4]{\left(a^2-a+1\right)\left(b^2-b+1\right)+\frac{1}{8}\left(a-b\right)^2}\)
Với a, b >0.
Liệu có thể chứng minh?
Cho \(a\ge0\), \(b\ge0\). CMR: \(\frac{1}{2}\left(a+b\right)^2+\frac{1}{4}\left(a+b\right)\ge a\sqrt{b}+b\sqrt{a}\)