Ta có:
\(a^4+b^4-2a^2b^2+c^4+d^4-2c^2d^2+2a^2b^2+2c^2d^2-4abcd\)
\(=\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2\ge0\)
\(\Rightarrow a^4+b^4+c^4+d^4-4abcd\ge0\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge4abcd\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\pm b\\c=\pm d\\ab=cd\end{matrix}\right.\)