\(\left(a-b\right)\left(a+b\right)=a^2+ab-ba-b^2=a^2-b^2\)
\(\left(a-b\right)\left(a+b\right)=a^2+ab-ba-b^2=a^2-b^2\)
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
Rút gọn các biểu thức:
a, (3x+1)^2-2(3x+1)(3x+5)+(3x+5)^2
b,(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
c,(a+b-c)^2+(a-b+c)^2-2(b-c)^2
d,(a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2
e,(a+b+c+d)^2+(a+b-c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2
1)Cho a+b=1. Tính M= 2(a^3+b^3)-2(a^2+b^2)
2) cho a+b=1. Tính N= a^3+b^3+3ab(a^2+b^2)+6a^2b^2(a+b)
Rút gọn biểu thức
a, (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
b, (a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2
c,(a+b+c+d)^2 +( a+b-c-d)^2+(a+c-b-d)^2+( a+d-b-c)^2
Rút gọn biểu thức
a, (3+1)(3^2 +1)(3^4 +1)(3^8 +1)(3^16 +1)(3^32 +1)
b, (a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2
c, (a+b+c+d)^2+(a+b-c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2
cho a,b >0, a+b=1
B= 1/a^2+b^2 + 1/ab + 2ab
C=1/a^2+b^2 + 1/ab + 4ab
D=1/a^2+b^2 + 1/ab + 5ab
cho a,b,c duong , a+b+c=1
a, tim Min A=1/(a^2+b^2) +1/(b^2+c^2) +1/(c^2+a^2) +1/ab +1/bc +1/ac
b, tìm Min B=1/(a^2+bc) +1/(b^2+ac) +1/(c^2+ab) +1/ab +1/bc +1/ac
1) Tính giá trị của biểu thức
a) (a+b+c)^2+(a-b-c)^2 tại b=1,c=-2,a=2021
b) (a+b+c)^2+(a+b-c)^2-2.(a+b)^2 tại c=-10
c) (a+b+c)^2+(-a+b+c)^2+(a-b+c)^2+(a+b-c)^2 với a^2+b^2+c^2=10
Cho a>b>0, n thuộc N*. So sanh:
A=(1+a+a^2 + ....+ a^(n-1))/(1+a+a^2+....+a^n)
B=(1+b+b^2+....+b^(n-1))/(1+b+b^2+......+b^n)
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c