\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{98}{99}\times\dfrac{99}{100}\)
\(=\dfrac{1\times2\times3\times...\times98\times99}{2\times3\times4\times...\times99\times100}=\dfrac{1}{100}\)
(1 - 1/2) × (1 - 1/3) × (1 - 1/4) × ... × (1 - 1/99) × (1 - 1/100)
= 1/2 × 2/3 × 3/4 × ... × 98/99 × 99/100
= 1/100