\(\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{2019\cdot2021}\right)\)
\(=\left(1+\dfrac{1}{2^2-1}\right)\left(1+\dfrac{1}{3^2-1}\right)\cdot...\cdot\left(1+\dfrac{1}{2020^2-1}\right)\)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot...\cdot\dfrac{2020^2}{\left(2020-1\right)\left(2020+1\right)}\)
\(=\dfrac{2\cdot3\cdot...\cdot2020}{1\cdot2\cdot...\cdot2019}\cdot\dfrac{2\cdot3\cdot...\cdot2020}{3\cdot4\cdot...\cdot2021}\)
\(=\dfrac{2020}{1}\cdot\dfrac{2}{2021}=\dfrac{4040}{2021}\)