\(Câu 1: Tổng diện tích mặt sàn: 60 𝑚 2 60m 2 Diện tích 1 ghế: 0 , 5 𝑚 2 0,5m 2 Diện tích 1 bàn: 1 , 2 𝑚 2 1,2m 2 Gọi 𝑥 x là số ghế, 𝑦 y là số bàn. Diện tích dành cho bàn ghế: 0 , 5 𝑥 + 1 , 2 𝑦 0,5x+1,2y Vì còn ít nhất 12 𝑚 2 12m 2 cho lối đi nên diện tích bàn ghế không vượt quá 60 − 12 = 48 𝑚 2 60−12=48m 2 . 👉 Bất phương trình: 0 , 5 𝑥 + 1 , 2 𝑦 ≤ 48 0,5x+1,2y≤48 b) Chọn 3 nghiệm nguyên dương (x, y): Thử 𝑥 = 60 , 𝑦 = 0 ⇒ 0 , 5 ⋅ 60 = 30 ≤ 48 x=60,y=0⇒0,5⋅60=30≤48 (thỏa) Thử 𝑥 = 0 , 𝑦 = 30 ⇒ 1 , 2 ⋅ 30 = 36 ≤ 48 x=0,y=30⇒1,2⋅30=36≤48 (thỏa) Thử 𝑥 = 40 , 𝑦 = 20 ⇒ 0 , 5 ⋅ 40 + 1 , 2 ⋅ 20 = 20 + 24 = 44 ≤ 48 x=40,y=20⇒0,5⋅40+1,2⋅20=20+24=44≤48 (thỏa) 👉 Ba nghiệm: ( 60 , 0 ) , ( 0 , 30 ) , ( 40 , 20 ) (60,0),(0,30),(40,20) Câu 2: Giá loại 1: 140 140 nghìn/kg Giá loại 2: 180 180 nghìn/kg Trộn 𝑥 x kg loại 1 và 𝑦 y kg loại 2. Giá trung bình không vượt quá 170 170 nghìn/kg: 140 𝑥 + 180 𝑦 𝑥 + 𝑦 ≤ 170 x+y 140x+180y ≤170 👉 Quy đồng: 140 𝑥 + 180 𝑦 ≤ 170 ( 𝑥 + 𝑦 ) 140x+180y≤170(x+y) 140 𝑥 + 180 𝑦 ≤ 170 𝑥 + 170 𝑦 140x+180y≤170x+170y 10 𝑦 ≤ 30 𝑥 10y≤30x 𝑦 ≤ 3 𝑥 y≤3x a) Bất phương trình cần tìm: 𝑦 ≤ 3 𝑥 , 𝑥 ≥ 0 , 𝑦 ≥ 0 y≤3x,x≥0,y≥0 b) Biểu diễn miền nghiệm: Miền nghiệm là nửa mặt phẳng nằm dưới và trên đường thẳng 𝑦 = 3 𝑥 y=3x trong góc phần tư thứ nhất (vì 𝑥 , 𝑦 ≥ 0 x,y≥0).\)
Câu 2:
a: Giá bán của x kg loại thứ nhất là 140x(nghìn đồng)
Giá bán của y kg loại thứ hai là 180y(nghìn đồng)
Tổng số tiền không quá 170 nghìn đồng/kg nên 140x+180y<=170
=>14x+18y<=17
b: Thay x=0 và y=0 vào 14x+18y<=17, ta được:
\(14\cdot0+18\cdot0\le17\)
=>0<=17(đúng)
=>Miền nghiệm của bất phương trình 14x+18y<=17 là nửa mặt phẳng vừa chứa biên vừa chứa điểm O(0;0) của đường thẳng 14x+18y=17
Bài 1:
a: Diện tích để kê x chiếc ghế là \(0,5x\left(m^2\right)\)
Diện tích để kê y chiếc bàn là: \(1,2y\left(m^2\right)\)
Diện tích để kê ghế và bàn là \(60-12=48\left(m^2\right)\)
=>0,5x+1,2y<=48
=>x+2,4y<=96
b: Ba nghiệm của bất phương trình x+2,4y<=96 là (0;0); (1;1); (2;2)

