Câu 4:
\(\sin\left(\alpha+\frac{\pi}{6}\right)\cdot\sin\left(\alpha-\frac{\pi}{6}\right)\)
\(=\frac12\cdot\sin\left(\frac{\alpha+\frac{\pi}{6}+\alpha-\frac{\pi}{6}}{2}\right)\cdot cos\left(\frac{\alpha+\frac{\pi}{6}-\alpha+\frac{\pi}{6}}{2}\right)\)
\(=\frac12\cdot\sin\alpha\cdot cos\left(\frac{\pi}{6}\right)=\frac12\cdot\frac{\sqrt3}{2}\cdot\frac35=\frac{3\sqrt3}{20}\)
Câu 5:
\(\sin^2\alpha+cos^2\alpha=1\)
=>\(cos^2\alpha=1-\left(\frac45\right)^2=1-\frac{16}{25}=\frac{9}{25}\)
\(P=cos4\alpha\)
\(=2\cdot cos^22\alpha-1\)
\(=2\cdot\left(2\cdot cos^2\alpha-1\right)^2-1\)
\(=2\cdot\left(2\cdot\frac{9}{25}-1\right)^2-1=-\frac{527}{625}\)

