Bài 7:
Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x,y,z\)
=>\(2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\ge0\forall x,y,z\)
=>\(\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)
=>\(x^2+y^2+z^2+2\left(xy+yz+xz\right)\ge3\left(xy+yz+xz\right)\)
=>\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\) với mọi x,y,z
=>\(3\left(xy+yz+xz\right)\le3^2=9\)
=>xy+yz+xz<=3
Dấu '=' xảy ra khi x=y=z
mà x+y+z=3
nên \(x=y=z=\frac33=1\)
Đúng 1
Bình luận (0)