Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mạnh Nguyễn Tiến

Bài 2. Cho tam giác \( ABC \) cân tại \( A \) có hai đường trung tuyến \( BD \) và \( CE \) cắt nhau tại \( G \).
a) Chứng minh \( BD = CE \).
b) Chứng minh tam giác \( GBC \) là tam giác cân.

a: Ta có: \(AE=EB=\dfrac{AB}{2}\)

\(AD=DC=\dfrac{AC}{2}\)

mà AB=AC

nên AE=EB=AD=DC

Xét ΔEBC và ΔDCB có

EB=DC
\(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔEBC=ΔDCB

=>EC=DB

b: ΔEBC=ΔDCB

=>\(\widehat{ECB}=\widehat{DBC}\)

=>\(\widehat{GBC}=\widehat{GCB}\)

=>ΔGBC cân tại G

=>GB=GC


Các câu hỏi tương tự
Nguyễn Khôi  Nguyên
Xem chi tiết
vu duc huy
Xem chi tiết
Đinh Thị Mỹ Hạnh
Xem chi tiết
Chu Ngọc Huyền
Xem chi tiết
Han Rosie
Xem chi tiết
Trần Hiếu Anh
Xem chi tiết
hoàng phạm
Xem chi tiết
Hoàng Quốc Chính
Xem chi tiết
Phương Thúy Ngô
Xem chi tiết
Thảo Nguyễn Phương
Xem chi tiết