Đặt hệ trục Oxyz vào hình vộp, với A trùng gốc O, tia AA' trùng Oz, tia AB trùng Ox, tia AD trùng Oy.
\(\Rightarrow A\left(0,0,0\right);B\left(2,0,0\right);A'\left(0,0,z\right);D\left(0,2,0\right),C'\left(2,2,z\right),D'\left(0,2,z\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC'}=\left(2,2,z\right)\\\overrightarrow{AD'}=\left(0,2,z\right)\end{matrix}\right.\)
\(\left[\overrightarrow{AC'},\overrightarrow{AD'}\right]=-2\left(0,z,-2\right)\Rightarrow\left(AC'D'\right)\) nhận \(\overrightarrow{n_2}=\left(0,z,-2\right)\) là 1 vtpt
\(\left(ABCD\right)\) trùng (Oxy) nên nhận \(\overrightarrow{n_1}=\left(0,0,1\right)\) là 1 vtpt
\(\Rightarrow cos30^0=\dfrac{\left|\overrightarrow{n_1}.\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|.\left|\overrightarrow{n_2}\right|}=\dfrac{\left|-2\right|}{\sqrt{z^2+4}}\)
\(\Rightarrow\dfrac{2}{\sqrt{z^2+4}}=\dfrac{\sqrt{3}}{2}\)
\(\Rightarrow z=\dfrac{2\sqrt{3}}{3}\) (do tính đối xứng nên chỉ cần lấy 1 giá trị dương)
\(\Rightarrow\overrightarrow{AD'}=\left(0,2,\dfrac{2\sqrt{3}}{3}\right);\overrightarrow{A'B}=\left(2,0,-\dfrac{2\sqrt{3}}{3}\right)\); \(\overrightarrow{AA'}=\left(0,0,\dfrac{2\sqrt{3}}{3}\right)\)
\(\left[\overrightarrow{A'B},\overrightarrow{AD'}\right]=\left(\dfrac{4\sqrt{3}}{3},-\dfrac{4\sqrt{3}}{3},4\right)\)
\(d\left(A'B,AD'\right)=\dfrac{\left|\left[\overrightarrow{A'B},\overrightarrow{AD}\right].\overrightarrow{AA'}\right|}{\left|\left[\overrightarrow{A'B},\overrightarrow{AD}\right]\right|}=\dfrac{2\sqrt{5}}{5}\)



