`a) 100^101 = (10^2)^101 = 10^(2.101) = 10^202`
Do `202 > 201`
`=> 10^202 > 10^201`
Hay `100^101 > 10^201`
`b) (2+7)^2 = 9^2 = 81`
`2^2 + 7^2 = 4 + 49 = 53`
Mà `81 > 53`
`=> (2+7)^2 > 2^2 + 7^2`
`c) 81^5 = (3^4)^5 = 3^(4.5) = 3^20`
Do `20 < 21`
`=> 3^20 < 3^21 `
Hay `81^5 < 3^21 `
`d) 3^40 = 3^(4.10) = (3^4)^10 = 81^10`
`5^30 = 5^(3.10) = (5^3)^10 = 125^10`
Mà `81 < 125 => 81^10 < 125^10`
Hay `3^40 < 5^30`
`a)` ta có `100^101=(10^2)^101=10^202 => 10^202>10^201=> 100^101 > 10^201`
`b)` ta có` (2+7)^2=81 , 2^2+7^2=53 => 81>53 => (2+7)^2 > 2^2+7^2`
`c) `ta có `81^5=(3^4)^5=3^20 => 81^5 < 3^21`
`d)` ta có `3^40=(3^4)^10=81^10 , 5^30= (5^3)^10=125^10 => 3^40<5^30`